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PAUL E. GREEN and VITHALA R. RAO*

This article compares, via synthetic data analysis, the performance of five
different methods for scaling averaged dissimilarities data under conditions in-
volving individual differences in "perception." All methods perform well when
no "degradation" of the (simulated) ratings is entailed. When the data are trans-
formed to zero-one values—a procedure sometimes followed in applied
studies—all procedures perform poorly compared to the no-degradation case.
Implications of these results for scaling applications involving group solutions are

discussed.

Multidimensional Scaling and Individual
Differences

To date, much of the applied research in multidi-
mensional scaling has emphasized the scaling of group
averages rather than scalings of separate individuals'
dissimilarities judgments. This is certainly true in
marketing research applications, although in some
cases [7, 10], scalings have been made of subgroup data
after the original subjects-by-dissimilarities matrix has
been analyzed for individual differences by Tucker and
Messick's points of view [16] model.

In some instances the data collection methods or
scaling techniques used by marketing researchers pre-
clude individual scalings. For example, Johnson [11]
reports the use of a metric technique (multiple discrimi-
nant analysis) to find stimulus configurations in dis-
criminant function space. The primary data consist of
N individuals' numerical ratings of each of n stimuli
with regard to each of m prespecified bipolar scales.
The stimuli are assumed to represent groups in an
/3-way discriminant analysis of the data. A plot of the n
stimulus centroids (taken across individuals) can be
made in discriminant function space as a representation
of the overall respondent group's perceptual configura-
tion. Moreover, the normalized regression coefficients
associated with average scale ratings (regressed on the
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discriminant axes) can be shown as vector directions in
this same space as a guide to axis interpretation. How-
ever, individual differences are suppressed in this
approach.' Additional problems associated with this
method concern: (1) the choice of appropriate bipolar
scales to begin with; (2) the possible inappropriateness
of the linearity assumptions of the model; and (3) the
implicit weights given to each scale in developing the
squared distance measure (Mahalanobis' D^) between
pairs of stimulus centroids in the discriminant function
space.

Stefflre [14] describes an alternative approach which
can also lead to aggregation of data across respondents.
In this case the primary data consist of a set of zero-one
ratings by each of A'̂  respondents on n stimuli (products)
with regard to m prespecified scales (e.g., use occasions
for each product). Although full details of the computa-
tion procedure are not explicated, one could obtain a
derived similarity score for each stimulus pair by ag-
gregating, across individuals and profile components,
the number of stimulus pair matchings (zero-zero or
one-one). If this surmise is true (and Stefflre asserts
that similarities responses are homogeneous over
respondents anyway [15]), the multidimensional scaling
analysis is again performed only at the overall group
level.

' This is not a necessity since the n-way discriminant analysis can
be preceded by some type of cluster analysis which groups respond-
ents into g groups, based on their relative similarity over the whole
set of scale ratings. Separate discriminant analyses could then be
made for each subgroup.
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Figure 1

ORIGINAL GROUP STIMULUS CONFIGURATION
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Howard and Sheth [10, pp. 212-20] describe a variety
of models, all based upon Eckart and Young's decom-
position model [6] and all utilizing stimulus ratings on
prespecified attributes as primary input data. For our
purposes, their approach can be viewed as representative
of factor analytic methods. It should be mentioned,
however, that Howard and Sheth discuss problems of
individual differences in dissimilarities judgments and,
indeed, utilize the Tucker and Messick approach [16]
to determine homogeneous subgroups of respondents
prior to (metric) scaling by means of factor analysis.

INDIVIDUAL DIFFERENCES MODELS

More recently, research interest by psychometricians
has centered on the development of individual differ-
ences models in multidimensional scaling. Carroll and
Chang [2], Bloxom [1], Horan [9], Kruskal [12], and
McGee [13] have all proposed models for representing
individual differences in dissimilarities judgments.
Carroll and Chang have succinctly described the inter-
relationships among these models as well as the relation-
ship of their model to Tucker and Messick's approach
(which was the first of this class of models to appear in
the literature).

Horan's, Bloxom's, and Carroll and Chang's models

are quite similar conceptually,^ although Horan's
motivation is to show that metric scaling methods which
develop the overall group's stimulus configuration by
averaging individual estimates of interstimulus Euclid-
ean distance (rather than using the root mean square of
distance estimates) will lead to certain kinds of distor-
tions of the group's normal attribute space [9]. If,
however, the root mean square is used, the average
individual's space will be related to the normal attribute
space by, at worst, a linear transformation.

Both Carroll and Chang's and Bloxom's models
result in a unique orientation of the group stimulus
space (in Horan's terminology, the estimated normal
attribute space). In addition, the models provide a set of
individual subject weights whose square roots can be
interpreted as coefficients which measure each re-
spondent's difTerential stretching of the dimensions of
the (common) group stimulus space in order to accom-
modate best his specific dissimilarity data. As currently
formulated, each of the three models is metric, although
Carroll and Chang show how their model can be made
quasi-nonmetric in the sense of Young and Torgerson's
first stage of their [17] two-stage approach to multi-
dimensional scaling.

The motivation of the study reported here is similar
to that of Horan. We wished to see, via synthetic data
analyses, if a variety of procedures—including those
suggested by researchers in marketing, viz., Johnson,
Stefflre, and Howard and Sheth—could reproduce a
known group stimulus configuration if the dimensions
of this space were operated upon by individual respond-
ents' (idiosyncratic) weights. The weights are assumed to
reflect individual differences in salience regarding the
dimensions of a common or group stimulus configura-
tion.

THE STUDY DESIGN

The study design consisted of first constructing a
group stimulus configuration, in two dimensions iUustra-
tively. For ease of visual interpretation, 15 points were
arranged in two dimensions so as roughly to trace out
the letter "R." Figure 1 shows this group stimulus
configuration.

We next developed a set of individual subject weights
or (squares of) axis-stretching factors so that each
subject's transformed Euclidean distances could be
represented as:

(1)

where (following, in part, the notation of Carroll and
Chang):

w,( denotes the salience of Respondent /(/ = 1, 2,

^ It should be mentioned, however, that Horan's model, unlike
those of Carroll and Chang and Bloxom, does not provide for a
unique orientation of the stimulus configuration.
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• • • , TV) for dimension /(; = 1, 2, • • • , r) of the
group stimulus configuration, and

Xjt, Xkt denote the projections of stimuliy and kij, k =
1,2, • • • , n;J 9^ k) on dimension t of the group
stimulus configuration.

We also assume here that the rth subject's dissimilarity
measure Sj*' for the stimulus pair j and k is linearly
related to djp, or notationally:

where L represents a linear function with positive slope.
Finally, in terms of the Carroll-Chang model we assume
that stimulus j's coordinate value on axis t (in Subject
i's transformed space) is represented by:

(3) ;'iP = VvV/xy,

where:
yjl^ denotes the coordinate of stimulus j on dimen-

sion t of the configuration of Subiect /, and
w\{'^ denotes the square root of Subject i's salience

for dimension t of the group stimulus space.
In this case each subject's space is assumed to represent
a differential expansion (or contraction) along directions
corresponding to the axes of the group stimulus space.

We next developed a set of 30 pairs of w\','^ values—
one for each axis of Figure 1̂ —to represent 30 (hypo-
thetical) subjects. The weights were chosen so as to
vary systematically over the range w\'i = 1; w^^" = 0,
to w\'i = 0; w]'^^ = 1. In all cases the sum of squares
of the wj'/ values was set to equal unity.' Figure 2
shows, illustratively, the differentially stretched space
of Subject 5, using the square roots of his pair of salience
weights, i.e., the w\{^, as axis-stretching factors. These
were 0.97662 and 0.21497, respectively, for dimensions
one and two.

Thirty configurations, each representing a differential
stretching or contraction of the group stimulus space,
were constructed. Next, in order to simulate the notion
of attribute ratings in the Johnson, Stefilre, and How-
ard-Sheth procedures, a set of 16 vectors was positioned
in each (hypothetical) subject's individual space. ̂  Vector
directions (for each individual, independently) were
chosen by: (1) selecting a random number between
zero and Tr/8, representing an angle 6, expressed in
radians; and (2) adding multiples of ir/8 to the ran-
domly determined starting angle so as to provide a
reasonably full (and balanced) sweep of each subject's
two-space.

Each subject's individual set of 16 ratings of each

' The weights were chosen to result in equal axis weighting for
the average subject. Thus, if procedures (root mean square of
individual distances) suggested by Horan [9] were used, the original
configuration of Figure 1 should be recovered perfectly.

* Given the manner in which vector directions were obtained,
the last eight vectors are reflections (with perfect negative correla-
tion) of the first eight. This redundancy was built into the model in
order to simulate the tendency of many researchers to include scales
with reversed polarity as a check on respondent consistency.

Figure 2
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Stimulus was then found by projecting the stimulus
points onto his (idiosyncratic) set of vectors (and their
reflections). For each subject, then, a 15 X 16 set of
ratings (vector projections) was derived. (Note, how-
ever, that the rank of this matrix is two, given the man-
ner in which the vectors were obtained.) Our final set
of synthetic primary data thus consisted of a 30 X 15 X
16 three-way matrix (of subjects by stimuli by scales)
whose cell entries were simulated numerical scale
ratings.

Simulating the Scaling Methods

The three-way matrix of primary data was then
scaled under a variety of procedures:

1. Johnson's procedure was simulated by running a 15-
group discriminant analysis [5] of the ratings data.
Each stimulus point was assumed to represent a group
and the first two discriminant functions were found.
Group centroids were plotted in this discriminant
function space as a way of "recovering" the original
configuration of Figure 1.

2. Euclidean distances (across the 16-component ratings
profile) were next computed for each stimulus pair—
first for each subject separately and then for the ratings
averaged over all 30 subjects.
a. The average subject's Euclidean distances were first

scaled by a metric multidimensional scaling pro-
gram, yielding a total-group stimulus configuration
in two dimensions. In this case Euclidean distances
were computed over the averaged profile ratings,
not the root mean squared ratings.

b. The average subject's Euclidean distances were then
scaled by the TORSCA nonmetric scaling program,
again yielding a total-group stimulus configuration.
In this case only the rank order information in the
input data was utilized.

c. The 15X15 Euclidean distance matrices of each of
the 30 subjects were submitted to Carroll and
Chang's INDSCAL program to find a group stim-
ulus space and a set of individual salience weights
for each subject.

d. The same data described in the last step were then
scaled by Kruskal's approach to individual differ-
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ences analysis, using the program option which
constrains all subjects to share a common stimulus
configuration but allows individual differences in
the monotone function relating interpoint distances
to input dissimilarities.

3. Stefflre's procedure was simulated by downgrading the
ratings data of each subject to a set of zero-one ratings
on each of the 16 vectors. Ratings above the mean of
each scale were assigned a value of one and those less
than or equal to the mean were assigned a value of
zero. Next, a 15 X 15 similarities matrix was devel-
oped for each subject by simply counting the num-
ber of one-one and zero-zero matches for each pair of
stimuli.
a. These 30 similarities matrices were scaled by the

same set of procedures described (in 2) above. (Ag-
gregation was done by summing frequencies on a
cell-by-cell basis.)

b. Johnson's procedure was also used on these "de-
graded" data. In this case all individual ratings
used in the discriminant analysis were again either
zero or one.

As can be surtnised from the above description, our
priticipal objective was to examine the recovery of
the known group stimulus configuration of Figure 1
under various methods that have been proposed by
applied researchers in marketing. In addition, we wished
to examine the individual difference approaches of
Carroll and Chang and Kruskal under conditions
designed to satisfy the Carroll-Chang model.

The problem of ascertaining the extent of (metric)
recovery of the original configuration under the ten
scaling analyses described above was handled by com-
puting, as a goodness-of-fit measure, the product

Figure 3

RATINGS DATA*
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"Arrows refer to points of original configuration.

moment correlation between interpoint distances com-
puted from the original configuration of Figure 1 and
each of the recovered group stimulus configurations,
respectively. While other measures could be used (e.g.,
an average cosine measure between the vectors of the
original group stimulus configuration and the most
congruent [4], orthogonally rotated recovered configura-
tion, or a canonical correlation between the original
configuration and each of the recovered configurations)
the product moment correlation is the most appro-
priate, given the desire to retain information on relative
interpoint distances. In this case we are restricting the
type of transformation (linking recovered configura-
tion to original configuration) to be a similarity trans-
form.

RESULTS OF THE ANALYSIS

As indicated in the preceding section, numerical
ratings were simulated by choosing 16 vectors in each
of the 30 subjects' transformed spaces and projecting
each subject's stimulus points onto each of his 16 rating
vectors. The various scaling analyses described in the
preceding section were then performed.

Ratings Data

We will first describe the results of the synthetic data
analysis in terms of the metric models: (1) multiple
discriminant analysis; (2) metric scaling of (average
subject) interstimulus Euclidean distances, converted
to scalar products; and (3) Carroll and Chang's
INDSCAL program. From the first column of the table,
all three approaches recover the group stimulus con-
figuration essentially perfectly in terms of relative in-
terpoint distance preservation. Illustratively, Figure 3
shows a plot of the original configuration (in a princi-
pal components orientation) and the configuration
obtained by the multiple discriminant procedure, ro-
tated to maximal congruence [4]. All of the techniques
produced essentially equivalent results to those of
Figure 3.

INTERPOINT DISTANCE CORRELATIONS BETWEEN

ORIGINAL AND RECOVERED CONFIGURATIONS

Method

Multiple discriminant analysis
Factor analysis of scalar products
INDSCAL analysis
TORSCA nonmetric scaling analysis
M-D-SCAL IV nonmetric analysis of

individual differences

The discriminant analysis, showing virtually perfect
recovery of the group stimulus space, also yielded two
discriminant functions which accounted perfectly for

Original
ratings

0.997
1.000
0.999
1.000
0.994

Zero-one
data

0.738
0.309
0.756
0.763

-0.025
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the total among-to-within-group dispersion.^ While
the metric (factor) analysis of scalar products (derived
from Euclidean distances) accounted, in two dimen-
sions, for slightly less than the total variance, the extra
dimensions had no effect on solution recovery." Since
the underlying model was based on Carroll and Chang's
INDSCAL formulation, it is not surprising that es-
sentially perfect recovery of the group stimulus con-
figuration was found here as well.

The nonmetric methods, requiring maintenance of
only monotonicity between dissimilarities and distances,
also produced essentially perfect reproduction of the
original group stimulus space. The TORSCA average
subject ratings (converted to dissimilarities by com-
puting Euclidean distances of stimulus pairs in ratings
space) and the M-D-SCAL IV approach (which allows
idiosyncratic monotone transforms with common
configuration over subjects) both revealed the linear
character of the transformations used in the analysis.
Not surprisingly, the stress value [17] associated with
the TORSCA scaling was only 0.00005—for all practical
purposes, zero.' The M-D-SCAL IV average stress
value was considerably higher (0.064) but still yielded
virtually perfect reproduction of the original group
stimulus configuration.'

Zero-One Data

As will be recalled from the earlier discussion, in
the second phase of the synthetic data analysis, the
ratings data of each subject were downgraded to
zero-one responses; ratings above the mean received a
value of unity and those equal to or below the mean,
zero.

In the multiple discriminant analysis the zero-one
ratings were entered directly into the computer pro-
gram. In the case of the remaining four scaling ap-
proaches similarity measures at the individual-subject
level were computed by merely counting up the one-
one and zero-zero matches for each stimulus pair
across the 16 scales. In the case of the INDSCAL and
M-D-SCAL IV models, the set of 30 such matrices was
entered as similarities data. In the factor analytic and
TORSCA analyses the similarities numbers were merely

' Since the discriminant analysis implicitly utilized a squared
distance measure (Mahalanobis' D^) no extra dimensions of the
sort described by Horan [9] are introduced, given data at the in-
terval scaled level.

° Despite the fact that the procedure entailed an averaging of the
square roots of the subject weights (rather than using the root mean
square as suggested by Horan), the only effect of this incorrect
procedure was to produce extra dimensions. The configuration
found in the appropriate dimensionality (two dimensions) appeared
to be unaffected. In this case, however, 99.8% of the total variance
was accounted for by the first two dimensions.

' Since a nonmetric procedure was used here, use of an average
of square roots of salience weights should not—and evidently did
not—affect recovery of the original configuration.

8 It should be pointed out that a nonarbitrary configuration (the
original configuration itself) was used as a starting configuration for
all M-D-SCAL IV analyses.

Figure 4

ZERO-ONE DATA
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aggregated, cell by cell, across the 30 subjects. These
cumulative similarity values then served as primary
data input.

The second column of the table summarizes the
recoveries associated with the downgraded data. Figure
4 shows a plot of the original configuration and that
(illustratively) obtained from the multiple discriminant
procedure, again rotated to maximal congruence with
the original.

The multiple discriminant analysis of zero-one
ratings yielded two large eigenvalues, accounting for
93 % of the among-to-within-group dispersion and 11
more (quite small) roots, a reflection of the severe
nonlinearities introduced by quantizing the numerical
data. As would be expected, the correlation of inter-
point distances between the original group stimulus
configuration and that recovered by the discriminant
procedure was only 0.738, in contrast to the essentially
perfect recovery noted before.

The factor analysis of scalar products derived from
the aggregated similarities data also reflected the non-
linearities introduced by the quantizing procedure. In
this case three large eigenvalues, accounting for 94%
of the variance, and five smaller roots were found.
Again, we were unable to recover the "R" configura-
tion; the interpoint distance correlation dropped
markedly to 0.309. Apparently averaging distances
(rather than squared distances) strongly affects re-
covery if the ratings are first subjected to a (severe, in
this case) nonlinear transformation. This is so even
though the correct dimensionality was utilized in the
scaling of the similarity measures.

The quantizing procedure also affected the INDSCAL
results, again a reflection of severe nonlinearities intro-
duced in the data degradation. The interpoint distance
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correlation dropped to 0.756 (about the same as noted
in the discriminant analysis).

The nonmetric methods—TORSCA and M-D-SCAL
IV—showed quite disparate results for the quantized
data. The stress value under the TORSCA analysis, at
0.0045, was still low, and the highly nonlinear (essen-
tially a step-function) transformation implied by the
quantizing procedure was reproduced quite well. Still,
the configuration that was produced by the program
looked more like. a circle than the letter "R." The
relatively poor recovery was shown by an interpoint
distance correlation of 0.763.

The M-D-SCAL IV results were considerably worse,
however. First, the average stress found in this case
was 0.5, even though a nonarbitrary starting conflgura-
tion was used. The flnal conflguration looked very little
like the letter "R" and the nonlinear transform found
above was not reproduced. Given these results, it is
not surprising that the interpoint distance correlation
was —0.025, showing no ability to recover the original
configuration.

In summary, all methods performed essentially
perfectly in the recovery of the group stimulus con-
figuration in terms of the original ratings. Thus, despite
the fact noted by Horan [9] that the averaging of
distances (in this case computing distances across pro-
files based on an average of square roots of individuals'
weights rather than root mean squares) can lead to
nonlinear distortions of the group stimulus space,
recoveries were practically perfect. As observed, by
Carroll and Chang [2], however, such distortions
as described by Horan may be relatively minor so
long as the data are analyzed in the correct dimen-
sionality. (This is not to say, however, that the use of
root mean squares is unnecessary; we merely wish to
see how serious the effect would be if one departed
from the correct averaging procedure.)

When the ratings were downgraded to zero-one
values, all of the models displayed poorer recovery.
The metric approaches, multiple discriminant analysis
and INDSCAL, recovered the original configuration
about as well as the TORSCA nonmetric procedure.
The factor analytic (metric scaling) model and M-D-
SCAL IV individual differences approach did con-
siderably poorer. As noted above, Horan's suggestion
regarding the use of appropriate averaging procedures
turned out to be important in the case where the ratings
were subjected to a nonlinear transformation prior to
averaging.

DISCUSSION

Our comparison of five methods for obtaining group
stimulus spaces under assumptions of individual per-
ceptual differences (as portrayed by the Carroll-Chang,
Bloxom, and Horan models) indicates that all pro-
cedures yield excellent recoveries before the data are
"degraded" to zero-one ratings. Moreover, even the

factor analysis of distances (converted to scalar prod-
ucts) as obtained from averaged ratings rather than
root mean square ratings, reproduces the original
configuration as well. Thus, using the appropriate
dimensionality, distance averaging (rather than taking
root mean squared distances) can provide a close
approximation to results obtained by application of the
(correct) method suggested by Horan [9], so long as
the arguments of the distance function are not subjected
to nonlinear transformation.

Quantizing the ratings data to zero-one values, how-
ever, results in a real loss in information, despite the
fact that 16 ratings vectors were introduced in a man-
ner so as to sweep the space of each individual subject's
(transformed) configuration in a balanced way. At the
average subject level the effect of this type of data
degradation was to produce a configuration which
looked more like a circle than the letter "R." The
discriminant analysis, INDSCAL and TORSCA non-
metric analyses all produced circle-like configurations
with consequent reduction in goodness of fit.' The
recoveries found from the factor analysis and M-D-
SCAL IV analysis were so poor as to be useless from a
practical standpoint.

Thus we are led to conclude—at least tentatively—
that the quantizing procedure results in a real loss of
information at the two-space level which appears
analogous to various types of information losses shown
by Green and Rao [8] in the context of obverse factor
analysis of correlation matrices.'" The quantizing pro-
cedure used here exhibits the effect of projecting stimu-
lus points onto a unit circle so that any two points
falling on the same radius cannot be distinguished after
this transformation. Not only is the dimensionality of
the input data increased by this quantizing trans-
formation, but lower dimensional information about
interpoint distance is lost which cannot be recovered
by either metric or nonmetric methods.

IMPLICATIONS

From a practical standpoint, this analysis has shown
several findings which should be useful to application
researchers:

1. Under conditions where no degradation of the ratings
data takes place:
a. The discriminant analysis procedure, utilized by

Johnson [11], performs quite well and does not
introduce extra dimensions associated with aver-

" A more appropriate recovery measure for the INDSCAL solu-
tion, given its unique orientation, would be the root mean square
of pairwise projection correlations with the original configuration.
Interpoint distance correlations were used here in order to be com-
parable to the procedure used in assessing recovery of the other
scaling procedures.

" We might add that the results found here (for the average sub-
ject) were also found (in subsequent work) at the individual subject
level; hence they do not appear to be a reflection of the averaging
process as such.
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aging distances rather than taking root mean
squares.

b. The factor analytic proceured used by Howard and
Sheth [10], does introduce extra dimensions but, if
the correct dimensionality is used, the effect on con-
figuration recovery is nil. Moreover, this procedure
can be easily modified to use root mean squares,
thus obviating any such difficulties.

2. Under conditions involving the quantizing of ratings
data to zero-one values, all of the procedures used
here—including nonmetric methods—lead to poor re-
covery of the original group stimulus configuration.

At this stage in the investigation of alternative scaling
procedures, where individual differences in perception
are quite possible, we support the type of model sug-
gested by Carroll and Chang, Bloxom, and Horan.
We take this view even though all of the above methods,
at the ratings data level, lead to virtually perfect re-
coveries of the group stimulus space.

The Carroll-Chang model (which can be made
quasi-nonmetric) not only develops the group stimulus
space but, in addition, provides: (1) output information
regarding individual differences in salience weights and
(2) a unique orientation of the group stimulus space. This
additional information strikes us as highly relevant for
investigating the bases of individual differences in
dissimilarities judgments, their relationship to market
segmentation and associated policy questions in mar-
keting management.
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